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The paper is aimed at the elucidation of the main factors responsible for the single-chain magnet behavior of
the cobalt(II) disphosphonate compound Co(H2L)(H2O) with a 1D structure. The model takes into account
the spin-orbit interaction, the axial component of the octahedral crystal field acting on the ground-state
cubic4T1 terms of the Co(II) ions, the antiferromagnetic exchange interaction between Co(II) ions as well as
the difference in the crystallographic positions of these ions. The conditions that favor the single-chain magnet
behavior based on spin canting in a 1D chain containing inequivalent Co(II) centers are discussed. The
peculiarities of this behavior in chains containing orbitally degenerate ions are revealed. The qualitative
explanation of the experimental data is given.

1. Introduction. Short Overview of Experimental Results

The most fascinating developments of the past decade in the
field of molecule-based magnetism involve the discovery and
characterization of single molecule magnets (SMMs)1-11 and
single-chain magnets (SCMs).12-19 Magnetic bistability and slow
magnetic relaxation at low temperatures are the distinctive
features of these systems that may lead to future trends for wide
applications in quantum and molecular electronics. The majority
of known SMMs and SCMs contain ions with orbitally
nondegenerate ground states. For SMMs of this type the energy
barrier for magnetization reversal appears as a result of the
combination of the large spinS of the ground state and a
significant negative zero-field spliitingDS, whereas the relax-
ation time of magnetization exhibits a thermally activated
behavior (Arrhenius law)

In accordance with the Glauber model20 for SCMs in which
individual anisotropic units possessing ground states with
quenched orbital angular momenta are coupled by ferromagnetic
exchange, the relaxation time also depends on the exchange
integralJF of this interaction

In an attempt to increase both the energy barrier for
magnetization reversal and the lifetime of magnetization,

researchers have turned to new types of SMMs11,21,22and SCMs
that contain ions with unquenched orbital angular momenta in
the ground state. Recently we demonstrated23-25 that for the
SMM of this kind, the first-order single ion anisotropy and
the anisotropy of exchange interaction are responsible for the
formation of the barrier for reversal of magnetization. As for
the SCM containing orbitally degenerate ions, the state of
experiment and theory is very scarce. Only a few examples of
such type systems have been reported.26,27

In the cobalt(II) diphosphonate Co(H2L)(H2O) compound
which displays SCM properties26 the Co(II) ions are linked
through a bridging phosphonate oxygen atom to create a 1D
chain of corner-sharing octahedra that propagate in a zigzag
fashion (Figure 1). The crystallographic positions of neighboring
Co(II) ions in the chain are inequivalent, however, due to the
fact that the corresponding ligand octahedra are rotated with
respect to each other. It will be demonstrated in this paper that
this situation results in a noncollinear spin structure (spin
canting). At the same time the two cobalt centers in the chain
present identical environments and are linked to five oxygen
and one nitrogen atoms. TheøT vs T plot of the cobalt(II)
diphosphonate compound Co(H2L)(H2O) (Figure 2) exhibits a
room-temperature value of 3.2 emu‚mol-1‚K, which is higher
than the expected value for a spin-only case (øT ) 1.8
emu‚mol-1‚K, S) 3/2). Upon lowering the temperature, theøT
value decreases and reaches a minimum of 0.6 emu‚mol-1‚K
at 7 K. Below 7 K,øT increases abruptly to reach a maximum
at∼2.5 K (øT ) 2.5 emu‚mol-1‚K) and finally decreases again
at lower temperatures. The observedøT behavior indicates an
antiferromagnetic exchange interaction between the Co ions and
the origin of theøT maximum at∼2.5 K is attributed to spin
canting. The SCM behavior of the title compound is evidenced
by the temperature dependence of theacsusceptibility for which
both the real and imaginary components are strongly frequency
dependent (Figure 3).26
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In striving to understand the SCM behavior of the Co(H2L)-
(H2O) chain compound we note that, in a first approximation,
the nearest octahedral surrounding of the Co(II) ion is tetrago-
nally distorted.26 The tetragonal component of the crystal field
splits the ground4T1 term of the Co(II) ion into the orbital singlet
4A2 and the orbital doublet4E. The description of the ground

state splitting by the zero field splitting HamiltonianDS[SZ
2 -

(1/3)S(S+ 1)] proves to be only valid when the ground state is
4A2 and it is well separated from the4E state (strong tetragonal
field). However, the observed room-temperatureøT value
indicates the presence of an unquenched orbital momentum of
the Co(II) ions in the Co(H2L)(H2O) compound. Thus, in
examining the magnetic properties of this compound, one must
deal with a significant local (single-ion) anisotropy that cannot
be described by the termDS[SZ

2 - (1/3)S(S+ 1)]. Besides this
problem, the role of spin canting in the formation of an
uncompensated magnetic moment in a chain with antiferro-
magnetic coupling must also be elucidated. The relaxation time
of magnetization for the title compound does not obey the law,
eq 2. The above arguments clearly show that the conventional
model based on the spin-Hamiltonian, which involves the
isotropic exchange interaction between the Co(II) ions in the
chain and a zero-field splitting term fails for the description of
the magnetic properties of the Co(II) chain compound in this
study. The aim of this paper is to provide insight into the
interplay between the local anisotropy of the Co(II) ions
possessing the unquenched orbital momenta, antiferromagnetic
exchange interaction between these ions, and spin canting. The
influence of these key factors on the magnetic properties and
SCM behavior of the Co(II) chain will be considered. We will
elaborate a new approach that can be used to analyze the SCM
properties of 1D chains containing orbitally degenerate Co(II)
ions. Within the framework of the proposed approach special
emphasis will be placed on the qualitative interpretation of the
experimental data on the Co(H2L)(H2O) chain compound.

2. Pseudo-Spin-1/2 Hamiltonian for a Pair of Octahedrally
Coordinated Co(II) ions Exhibiting Spin Canting

The method of the effective pseudo-spin-1/2 Hamiltonian is
widely used for the description of the magnetic and spectro-
scopic properties of compounds comprising exchange coupled

Figure 1. (a) ORTEP representation of the Co(H2L)(H2O) unit. The
thermal ellipsoids are drawn at the 50% probability level. (b) Extension
of the view in (a) down thec-axis to emphasize the zigzag chain
structure. The Co and P atoms are shaded in pink and green,
respectively.

Figure 2. Temperature dependence oføT for the Co(H2L)(H2O)
compound. The inset shows the low-temperature part oføT.

Figure 3. Temperature dependence of theø′ (top) andø′′ (bottom)
components of the ac susceptibility with an oscillating field of 3 Oe at
fixed frequencies. The lines are guides for the eye.
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Co(II) ions. As a rule, such type Hamiltonians are constructed
on the basis of symmetry arguments, and the parameters of the
Hamiltonian are determined from fitting of the experimental
data (phenomenological approach).28-32 In the approach recently
developed33,34 the parameters of the effective Hamiltonian are
expressed through the set of microscopic parameters (spin-
orbit coupling constant, low-symmetry crystal field parameters
and Heisenberg exchange integral). However, until now this
approach has been applied to Co(II) ions that occupy identical
crystallographic positions. Herein we go beyond this simplifying
assumption and consider a pair of Co(II) ions, the octahedral
surroundings of which is tetragonally distorted and rotated with
respect to each other. A similar procedure for calculations of
the energy pattern for a trimeric Co(II) complex by means of
the second-order perturbation theory was performed in35 without
usage of the pseudo-spin-1/2 Hamiltonian.

Let us assign the indices A and B to two octahedrally
coordinated Co(II) ions which occupy inequivalent crystal-
lographic positions in a 1D chain. We introduce two local frames
of reference (Figure 4) relating to ions A and B in the chain.
To demonstrate the effects of spin canting in the chain with
utmost clarity, we assume that the tetragonal localZA andZB

axes subtend an angleæ each of them passing through a Co
and nitrogen atom, theYA andYB axes are parallel to each other
and perpendicular toZAZB plane, and the axesXA andXB lie in
theZAZB plane. The B center system axes can be obtained from
the A center system axes by theæ degree turn around theYA or
YB axis. Along with the local frames of reference we introduce
the molecular coordinates. TheZ axis of this system is chosen
along the bisector of the angleæ formed by the localZA and
ZB axes and theY axis of the molecular system coincides with
the localYA andYB axes (Figure 4).

The single-ion Hamiltonian can be presented as follows:

where the first term represents the spin-orbit interaction (λ is
the many-electron spin-orbit coupling parameter for the4T1-
term of the Co(II) ion,κ is the orbital reduction factor), the
second term describes the local axial crystal field acting on each
Co(II) ion, and the last term

is the operator of Zeeman interaction, whereinâ is the Bohr
magneton, andH is the applied magnetic field. In developing
the Hamiltonian eq 3, we consider that for ions A and B the
local axes coincide with the main axes of the tensor that
describes the splitting of the4T1 term in the local crystal field,
and the local surroundings of these ions are identical. Index i
in the parentheses in eqs 3 and 4 indicates that the angular

momenta operators and magnetic field components are defined
in the local frame associated with the site i (i) A, B).

The single-ion wavefunctions in the total angular momentum
representation are obtained by the Clebsch-Gordan decomposi-
tion |j, mj〉 ) ∑mlms C1ml ,3/2ms

jmj |1ml,3/2ms〉, wherems and ml are
the projections of the total spinS) 3/2 of the Co(II) ion and its
angular momentuml ) 1, respectively,j andmj represent the
total angular momentum of the Co(II) ion and its projection.
Becausej takes on the valuesj ) 1/2, 3/2, 5/2, the Hamiltonian
Hi is represented by the 12× 12 matrix. The diagonalization
of this matrix gives 6 Kramers doublets.

In Figure 5 the energies of these states in the absence of the
external magnetic field are shown as functions of the axial
crystal field parameter∆ for usually accepted values ofλ )
-160 cm-1, κ ) 0.8. From Figure 5 it is seen that for a wide
range of∆ values the ground Kramers doublet is well separated
from the excited states. This allows us to describe the energy
pattern of the low-lying levels of the exchange coupled Co(II)
pair by a pseudo-spin-1/2 Hamiltonian acting within the space
of the direct product of two Kramers doublets. The wave-
functionsΨgr((1/2) for the ground Kramers doublet represent
linear combinations of the states|j ) 1/2, mj ) (1/2〉, |j ) 3/2,
mj ) (1/2〉 and|j ) 5/2, mj ) (1/2〉, with the coefficients being
dependent on the parametersλ, κ and∆.

Along with the intracenter interactions described by eq 3 the
full Hamiltonian of the Co(II) pair includes the exchange
interaction between Co(II) ions. Following the idea of Lines,36

we will assume the isotropic Heisenberg-Dirac-Van Vleck
(HDVV) form of this interaction

whereJ is the many-electron exchange parameter and the single
ion spin operatorssA andsB and their projectionssR

A andsR
B (R

) X, Y, Z) refer to the common (molecular) frame.
Now we pass from the operatorssR

A, sR
B (R ) X, Y, Z) to the

operatorssX
i (i), sY

i (i), sZ
i (i), i ) A, B, defined in the local

coordinates (see eq A1 in Appendix). Then the exchange
Hamiltonian takes on the form

Further we examine the case when the splittings due to the
spin-orbit coupling and axial crystal field significantly exceed
those caused by the exchange interaction. Under this condition

Figure 4. Local and molecular coordinates.

H i ) -(3/2)κλl isi + ∆[l iZ
2(i) - 2/3] + ĤZE

i i ) A, B (3)

HZE
i ) â ∑

γ)X,Y,Z

[-3/2κl iγ(i) + gesiγ(i)]Hγ(i) (4)

Figure 5. Energy levels of the Co ion in the axial surrounding forλ
) -160 cm-1, κ ) 0.8.

Hex ) -2JsAsB ) -2 J(sX
AsX

B + sY
AsY

B + sZ
AsZ

B) (5)

Hex ) -2J{sY
A(A) sY

B(B) + cos(æ)[sX
A(A) sX

B(B) +

sZ
A(A) sZ

B(B)] - sin(æ)[sX
A(A) sZ

B(B) - sZ
A(A) sX

B(B)]} (6)
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one can use the perturbation theory with the unperturbed
Hamiltonian

and a perturbation

The HamiltonianH ) H0 + V operates within the total space
|jAmjA, jBmjB〉, wherejA andjB, as it was above-mentioned, take
on the values1/2, 3/2 and 5/2. We have to pass from this
Hamiltonian to the effective pseudo-spin-1/2 Hamiltonian that
operates in the restricted space|Ψgr

A (mjA),Ψgr
B (mjB)〉. Applying

the second-order perturbation procedure for the degenerate level,
one can present the effective pseudo-spin-1/2 Hamiltonian as
follows:

where Heff
(1) and Heff

(2) are the first- and second-order terms
defined as

and

whereE0 andEe are the ground and excited eigenvalues ofH0

and |e〉 represents the excited states of the Co(II) pair.
By calculating the matrixHeff with the aid of eqs 10 and 11

and expressing it in terms of the standard spin-1/2 matrices
τX

i (i), τY
i (i), τZ

i (i), we arrive at the following final expression for
the effective pseudo-spin-1/2 Hamiltonian:

where the symbol i in the parenthesis indicates that the spin
matrices as well as the magnetic field components refer to the
local i-frames. The effective exchange integralsJ̃Râ, and the
components of the effectiveg-tensorg̃Râ as well as the tensor
of the temperature-independent paramagnetism (TIP) andΛ̃|

) Λ̃ZZ and Λ̃⊥ ) ΛXX ) Λ̃YY are the known functions of the
intrinsic microscopic parameters∆, κ, λ and J. Because the
components of the localg-tensors and TIP are the same for the
ions A and B, we set in eq 12g̃Râ

i ≡ g̃Râ, Λ̃|
i ) Λ̃|, Λ̃⊥

i ) Λ̃⊥.
The Hamiltonian eq 12 differs in two main ways from that
obtained in the framework of the phenomenological approach.
First, eq 12 contains fewer nonzero parameters than the
phenomenological one because the parametersJ̃XY, J̃YX, J̃YZ, J̃ZY,

g̃XY, g̃YX, g̃YZ, g̃ZY prove to be vanishing. Second, the present
microscopic approach provides the dependence of all non-
vanishing parameters on the set of microscopic parameters.

To pass to the Hamiltonian defined in the molecular frame,
we apply the transformation for the components of the magnetic
field (eq A2 in Appendix) and the transformation reverse to
that in eq A1 for the spin operators.

Then the effective Hamiltonian takes on the form

In eq 13 all operators and components of the magnetic field
are defined in the molecular frame. The parametersJRâ of the
effective Hamiltonian defined in the molecular co-ordinates are
connected to the parametersJ̃Râ (local frames of reference) by
the relations:

Similarly, the components ofg-tensorgRâ
i are related to the

componentsg̃Râ
i as follows:

Finally, the relation between the components of the TIP-tensor
ΛRâ and the componentsΛ̃| andΛ̃⊥ is the following:

The dependence of the exchange parametersJRâ on the axial
field parameter∆ calculated forJ ) -1.5 and-2.5 cm-1 is
shown in Figure 6. For the angleæ we used the valueæ )
54.6° that was determined from the geometrical structure of the
cobalt(II) disphosphonate compound Co(H2L)(H2O). From
Figure 6 it is seen thatJXZ ) -JZX, and that the degree of the
exchange anisotropy depends on the strength of the axial crystal
field. The differences between the parametersJXX, JYY andJZZ

are more pronounced for negative∆ values. In the range-3000
cm-1 < ∆ < -500 cm-1 the parameterJZZ significantly exceeds
in magnitude all other components of theJRâ tensor, and thus,

H0 ) ∑
i)A,B

{-(3/2)κλl isi + ∆[l iZ
2(i) - 2/3]} (7)

V ) Hex + ∑
i)A,B

HZE
i (8)

Heff ) Heff
(1) + Heff

(2) (9)

〈Ψgr
A (m′jA),Ψgr

B (m′jB)|Heff
(1)|Ψgr

A (mjA),Ψgr
B (mjB)〉 )

〈Ψgr
A (m′jA),Ψgr

B (m′jB)|V|Ψgr
A (mjA),Ψgr

B (mjB)〉 (10)

〈Ψgr
A (m′jA),Ψgr

B (m′jB)|Heff
(2)|Ψgr

A (mjA),Ψgr
B (mjB)〉 )

- ∑
e

〈Ψgr
A (m′jA),Ψgr

B (m′jB)|V|e〉〈e|V|Ψgr
A (mjA),Ψgr

B (mjB)〉*

Ee - E0

(11)

Heff ) -2J̃XXτX
A(A) τX

B(B) - 2J̃YYτY
A(A) τY

B(B) -

2J̃ZZτZ
A(A) τZ

B(B) - 2J̃XZτX
A(A) τZ

B(B) - 2J̃ZXτZ
A(A) τX

B(B) +

â ∑
i)A,B

{g̃XXτX
i (i) HX(i) + g̃YYτY

i (i) HY(i) + g̃ZZτZ
i (i) HZ(i) +

g̃XZ[τX
i (i) HZ(i) + τZ

i (i) HX(i)] + Λ̃|HZ
2(i) +

Λ̃⊥[HX
2(i) + HY

2(i)]} (12)

Ĥeff ) -2JXXτX
AτX

B - 2JYYτY
AτY

B - 2JZZτZ
AτZ

B - 2JXZτX
AτZ

B -

2JZXτZ
AτX

B + â ∑
i)A,B

{gXX
i τX

i HX + gYY
i τY

i HY + gZZ
i τZ

i HZ +

gXZ
i (τX

i HZ + τZ
i HX)] + ΛXXHX

2 + ΛYYHY
2 + ΛZZHZ

2 (13)

JXX ) J̃XX cos2(æ/2) - J̃ZZ sin2(æ/2) - 1
2
(J̃XZ - J̃ZX)sin (æ)

JYY) J̃YY

JZZ ) -J̃XX sin2(æ/2) + J̃ZZ cos2(æ/2) - 1
2
(J̃XZ - J̃ZX) sin(æ)

JXZ ) 1
2
(J̃XX + J̃ZZ) sin(æ) + J̃XZ cos2(æ/2) + J̃ZX sin2(æ/2)

JZX ) - 1
2
(J̃XX + J̃ZZ) sin(æ) + J̃XZ sin2(æ/2) +

J̃ZX cos2(æ/2) (14)

gXX
A ) gYY

B ) g̃ZZ sin2(æ/2) + g̃XX cos2(æ/2) + g̃XZ sin(æ)

gYY
A ) gYY

B ) g̃YY

gZZ
A ) gZZ

B ) g̃XX sin2(æ/2) + g̃ZZ cos2(æ/2) - g̃XZ sin(æ)

gXZ
A ) -gXZ

B ) 1
2

sin(æ)(g̃ZZ - g̃XX) + g̃XZ cos(æ) (15)

ΛXX ) 2[Λ̃| sin2(æ/2) + Λ⊥ cos2(æ/2)]

ΛYY) 2Λ̃⊥

ΛZZ ) 2[Λ̃⊥ sin2(æ/2) + Λ̃| cos2(æ/2)] (16)
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the exchange Hamiltonian becomes highly anisotropic and
approximately acquires the Ising form. At the same time the
magnitudes of the parametersJRâ increase with the increase of
the parameter|J| of antiferromagnetic exchange. Finally, in the
high-symmetry case, when the Co(II) ions are in the perfect
octahedral surroundings (∆ ) 0), the exchange Hamiltonian
becomes isotropicJXZ ) JZX ) 0, JXX ) JYY ) JZZ.

The dependence of the components ofg-tensorgRâ
A ) gRâ

B on
the parameter∆ calculated withκ ) 0.8,λ ) -160 cm-1, æ )
54.6° andJ ) -1.5 cm-1 is shown in Figure 7. In the case of
∆ ) 0 we obtain the well-known limitsgZZ

i ) gXX
i ) gYY

i )
1/2(5ge + 3κ), gXZ

i ) 0 that correspond to the fully isotropic
Co(II) ion. The change in the magnitude and sign of the

parameter∆ dramatically changes the components of the
g-tensor. The most anisotropic case takes place for large negative
values of∆. At the same time for∆ < 0, the decrease of the∆
magnitude leads to the leveling of theg-factor values. Finally,
Figure 8 illustrates the dependence of the components of the
TIP tensor on the parameter∆.

3. Mean Field Approximation. Evaluation of the Barrier
for Magnetization Reversal

We start with the examination of the relaxation characteristics
of the Co chain in the mean field approximation. The Hamil-
tonian of interacting Co ions in an infinite 1D chain with spin
canting can be presented as

whereHint is the effective exchange Hamiltonian for the infinite
chain andHZE describes the interaction of the A and B type Co
ions in the chain with the external magnetic field. In the
molecular coordinates, the HamiltonianHint of the chain in
which A and B type ions alternate appears as follows:

wherel numbers the cells of the infinite chain, which contain
an AB pair of Co ions. As eq 18 is written down, the following
relationsJRR

AB ) Jaa
BA (R ) X, Y, Z), JXZ

AB ) -JXZ
BA, JZX

AB ) -JZX
BA,

JZX
AB ) -JXZ

AB between the exchange parameters have been taken
into account. One can derive these relations with the aid of eqs
6 and 12.

The Zeeman part of the chain Hamiltonian takes the form

Passing to the molecular field approximation, we perform in
eq 18 the following substitution:

where the parametersτjR
A andτjâ

B characterize the mean spins of

Figure 6. Exchange parametersJXZ, JZX, JXX, JYY, JZZ as functions of
the parameter∆ for κ ) 0.8, λ ) -160 cm-1, æ ) 54.6°, andJ )
-1.5 cm-1 (a) andJ ) -2.5 cm-1 (b).

Figure 7. Dependence of the componentsgRR
A ) gRR

B ) gRR (R ) X,
Y, Z) andgZX

A ) gXZ
A ) -gZX

B ) -gXZ
B ) gZX ) gXZ of the g-tensor on

the parameter∆ calculated withκ ) 0.8,λ ) -160 cm-1, æ ) 54.6°,
andJ ) 1.5 cm-1.

Figure 8. Components TIPR ) -2NAΛRR (R ) X, Y, Z) of the TIP
tensor as functions of the parameter∆: κ ) 0.8, λ ) -160 cm-1, æ
) 54.6°.

H ) Hint + HZE (17)

Hint ) -2∑
l

[JXX
AB(τXl

A τl
B + τXl

B τXl+1
A ) +

JYY
AB(τYl

A τYl
B + τYl

B τYl+1
A ) + JZZ

AB(τZl
A τZl

B + τZl
B τZl+1

A ) +

JXZ
AB(τXl

A τZl
B - τXl

B τZl+1
A - τZl

A τXl
B + τZl

B τXl+1
A )] (18)

HZE ) ∑
l

∑
i)A,B

â[gXX
i τXl

i HX + gYY
i τYl

i HY + gZZ
i τZl

i HZ +

gXZ
i (τXl

i HZ + τZl
i HX)] (19)

τRl

A τâl′
B ) τjR

Aτâl′
B + τRl

A τjâ
B - τjR

Aτjâ
B R, â ) X, Y, Z
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A and B ions and play the role of dimensionless order
parameters

whereH̃ is the chain Hamiltonian in the mean field approxima-
tion that decomposes into the sum of single ion Hamiltonians

HereN is the number of the AB cells in the chain, the indexes
n andm label the ions of the sublattices A and B, respectively,

The eigenvalues of the Hamiltonian eqs 22 and 23 depend on
the order parameters as well as on magnetic field components
and appear as follows:

Here the functionfA(HX, HY, HZ, τjX
B, τjY

B, τjZ
B) takes the form

The functionfB(HX, HY, HZ, τjX
A, τjY

A, τjZ
A) can be obtained from

eq 25 by means of the substitutionτjR
B f τjR

A (R )X, Y, Z). The
free energy of the AB unit cell can be expressed as

The order parametersτjX
A, τjY

A, τjZ
A, τjX

B, τjY
B, τjZ

B can be obtained by
the numerical solution of the set of self-consistent equations

Equations 27 are not explicitly listed here due to their hugeness.

The procedure of calculation of the temperature dependence of
the order parameters with the aid of eq 27 was carried out in
two stages. First, we calculate the parameters of the effective
exchange Hamiltonian, theg and TIP tensors for ions A and B
as functions of the axial distortion∆, and then we numerically
solve the system of eqs 27.

We start with an inspection of the influence of the parameter
∆ describing the axial splitting of the4T1 term of the Co(II)
ion on the type of spin ordering. The corresponding parameters
of the effective exchange Hamiltonian necessary for calculations
of the mean spin values can be easily obtained with the aid of
Figure 6. In Figure 9 the effective spin componentsτjR

A andτjR
B

are depicted for different∆ and J (J < 0) values. It is seen
that, in the case of relatively strong negative axial field (∆ <
0), the Z-componentsτjZ

A and τjZ
B line up antiparallel, and the

Y-components vanish. At the same time, until the critical value
value ∆cr (∆ < 0) is reached, theX-components are non-
vanishing and parallelτjX

A ) τjX
B. Such an uncompensated

magnetic moment appears in the case of sufficiently large
negative local distortions that lead to the inequalities|JZZ|, |JXZ|
> |JXX|, |JYY| and |JZZ| > |JXZ| between the parameters of the
effective exchange Hamiltonian. The increase of the absolute
value of∆ (∆ < 0) leads both to the increase of the temperature

τjR
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Tr[exp(-H̃/kT)τRl

A ]
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Figure 9. Order parameters as functions of the axial distortion∆ in
the case ofκ ) 0.8,λ ) -160 cm-1. (a)J ) -1.5 cm-1 and∆ ) 100
cm-1 (doted line),TC ) 6.4 K (1); ∆ ) -200 cm-1 (dot-dashed line),
TC ) 7.5 K (2); ∆ ) -500 cm-1 (solid line), TC ) 9.2 K (3); ∆ )
-1150 cm-1 (thick dashed line),TC ) 10.7 K (4);∆ ) -2000 cm-1

(thick solid line),TC ) 11.1 K (5). (b)J ) -2.5 cm-1 and∆ ) 100
cm-1 (doted line),TC ) 10.7 K (1);∆ ) -150 cm-1 (dot-dashed line),
TC ) 11.9 K (2);∆ ) -250 cm-1 (solid line),TC ) 13.1 K (3);∆ )
-500 cm-1 (thick dashed line),TC ) 15.5 K (4); ∆ ) -1000 cm-1

(thick solid line),TC ) 17.7 K (5).
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of the phase transition and the magnitude of theX-components
of the effective spin (Figure 9). We thus arrive at the conclusion
that even the antiferromagnetic exchange interaction is able to
produce a ferromagnetic type spin alignment along theX-axis.
Such an unusual effect is obviously the consequence of the spin
canting in the chain and significant local axial anisotropy of a
negative sign. Note that in the adopted pseudo-spin-1/2 formalism
the term “spin canting“ relates to the effective spins of the
ground Kramers doublets rather than to the true spinsS ) 3/2
of the Co(II) ions.

For ∆ > ∆cr an alternative qualitative picture arises (Figure
9). In this case the accumulation of the magnetic moment along
the X-axis does not occur, and only an antiferromagnetic type
ordering takes place. Providing∆cr < ∆ < 0 the magnetic
momentsτjZ

A ) -τjZ
B are aligned along theZ-axis, and for∆ >

0 they turn around and become oriented along theY-axis (τjY
A )

-τjY
B). Such a reorientation of the spins can be explained by the

behavior of the exchange parameters as functions of∆. As a
matter of fact, for∆cr < ∆ < 0 the exchange parameter|JZZ|
exceeds the parameters|JXX|, |JYY|, |JXZ| whereas for∆ > 0 the
relation |JYY| > |JXX|, |JZZ|, |JXZ| holds (Figure 6).

Now let us analyze the composition of the wavefunctions
corresponding to the energy levelsE1,2

A andE1,2
B of ions A and

B in the molecular field for negative values of the parameter∆
satisfying the inequality∆ < ∆cr. Numerical calculations show
that in the absence of an external magnetic field these wave-
functions can be written down in the form

where the coefficientsc1 andc2 satisfy the inequality|c2|2 >>
|c1|2. For instance, for∆ ) -500 cm-1, J ) -1.5 cm-1 andT
< 9.1 K one obtains|c2|2 ) 0.9994,|c1|2 ) 0.0006. Thus, the
excited and the ground states of A-type ions mainly correspond
to the pseudo-spin projections-1/2 and+1/2, respectively. For
B-type ions a reverse order of levels takes place. This means
that for both types of ions in the chain the transition from the
ground state to the excited one is accompanied by a spin flip.
Thus, to change the sign of the spin projection of an ion in the
molecular field induced by the chain, a barrier of the magnitude
U ) E1

A - E2
A ) E1

B - E2
B must be overcome. The magnitude

of this barrier is obviously determined by the parametersλ, ∆
andJ, which describe the key intra- and intercenter interactions
in the chain. At the same timeU can be regarded as a reasonable
measure of the barrier energy only for∆ < ∆cr when an
uncompensated magnetic moment exists. Actually,U represents
the energy that should be applied to the system to destroy the
ferromagnetic type spin alignment along theX axis. Figure 10
illustrates the dependence of the barrier magnitudeU on the
parameter∆ for κ )0.8, λ ) -160 cm-1, J ) -1.5 cm-1 and
æ ) 54.6°. It can be seen that the barrier magnitudeU represents
a nonmonotonic function of the parameter∆. With the decrease
of the magnitude of∆, theU value increases, passes through a
maximum and then decreases monotonically. For∆ ) -1147
cm-1 the barrier reaches the maximum valueUmax ) 14.3 cm-1.
Insofar as the order parameters (Figure 9a) and, thus, the energy
levels, eq 24 keep their constant values over a comparatively
wide temperature range, the barrier height also remains constant
in this range. However, the decrease of the order parameters
with temperature leads to the diminution of the energy barrier
to reverse the magnetization direction. Simple analysis of
Figures 6a and 9 also shows that in the range|∆cr| < |∆| <
3000 cm-1, the barrier height can be evaluated asU ≈ 2JZZ,

and hence in this particular case we arrive at the Glauber’s
result20 obtained in the framework of the 1D Ising model.
Actually, for |∆cr| < |∆| < 3000 cm-1 (Figure 6a), the
parameters of the effective exchange Hamiltonian eq 13 are
subjected to the inequality|JZZ| >> |JXX|, |JYY|, |JXZ|, so that
the effective Hamiltonian takes on the Ising form:

In this case, according to the Glauber theory, the magnitude of
the barrier for spin reorientation is shown to correspond to the
energy loss in the one-spin flip-flop process; that is, it is
approximately equal to 8JZZ(1/2)2 ) 2JZZ.

Finally, we determine the axial distortion∆ of the local
surrounding of Co(II) ions in the Co(H2L)(H2O) compound
using the experimental data on the temperature dependence of
the relaxation time in this compound and the calculated
dependence of the parametersJRâ andU on ∆ (Figure 10). The
temperature dependence of the relaxation time was obtained
from the frequency dependence of the componentsø′ and ø′′
of theac susceptibility (Figure 3) and it is presented in Figure
11. The experimental data forτ were fit to the Arrhenius
expression

The best fit parameters were found to beU ) 15.4 cm-1, τ0 )

ψ1,2
A ) (c1|(1/2〉 + c2|-1/2〉 ψ1,2

B ) c2|(1/2〉 (c1|-1/2〉
(28)

Figure 10. Variation of the barrier for magnetization reversal as a
function of negative axial distortions∆ with κ ) 0.8,λ ) -160 cm-1,
J ) -1.5 cm-1, æ ) 54.6°.

Figure 11. Temperature dependence of the relaxation time. The squares
represent the calculated experimental values,26 the solid line corresponds
to the best fit of the data to eq 30.

Heff ) -2JZZτZ
AτZ

B (29)

τ(T) ) τ0 exp( U
kT) (30)
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3 × 10-8 s. Comparing these values with the calculated
dependence of the barrier height on the parameter∆, we find
that the barrier energy estimated from the experimental data is
in satisfactory accord with that calculated for∆ ) -1150 cm-1.
To support the contention that the parameter values∆ ) -1150
cm-1 andJ ) -1.5 cm-1 are the only ones that conform to the
observed magnitude of the barrier, we refer to Figures 6b and
9b. From Figure 9b it follows that forJ ) -2.5 cm-1 a
nonvanishing magnetic moment directed along theX axis
already appears for the value∆ ) -500 cm-1, which corre-
sponds to the barrier energyU ) 2JZZ ≈ 21.4 cm-1 (Figure
6b) that is higher than the observed one. From Figure 6b it is
seen that for|∆| > 500 cm-1 andJ ) -2.5 cm-1 the barrier
energy increases. For|∆| < 500 cm-1 an uncompensated
magnetic moment cannot appear, the anisotropy of the effective
exchange Hamiltonian diminishes, and the concept of the barrier
becomes inapplicable. It is clear that in the case of antiferro-
magnetic exchange and|J| < 1.5 cm-1 for all favorable values
of ∆ the barrier energy will be noticeably lower than that
extracted from the experimental data.

4. Magnetic Properties

In the framework of the mean field approximation we were
able to elucidate the conditions under which an uncompensated
magnetic moment appears and to obtain a reasonable value for
the axial field parameter providing the experimental barrier
value. However, the known deficiencies of the mean field
approximation in examination of the magnetic properties led
us to simulate the magnetic behavior of an infinite chain by
calculation of the properties of a closed ring chain withN unit
cells each cell containing a pair of ions A and B. Extrapolation
of these properties to the infiniteN number gives us the behavior
of the named infinite chain. In these calculations we use the
energy levels obtained by exact solution of the quantum-
mechanical problem for the ring chain using the value∆ )
-1150 cm-1 found in section 3. The diagonal components of
the magnetic susceptibility are determined as

The susceptibility of the powder sample is calculated with the
aid of the expression:

The calculations were performed for a chain containing up to 5
unit cells AB (10 spins). In this case the size of the Hamiltonian
matrix is 1024. This number of cells is enough to demonstrate
the main peculiarities of the magnetic properties. While deriving
the effective exchange Hamiltonian, we restricted our consid-
eration to the lowest Kramers doublets of ions A and B. For
this reason we consider only the magnetic properties at
temperatures lower than 50 K.

Figure 12 presents the magnetic susceptibility of a ring chain
consisting of 10 Co ions (N ) 5) as a function of the exchange
parameterJ. One can see that with a temperature decrease the
magnetic susceptibility diminishes, then passes through a
minimum, and finally increases. The position of the minimum
shifts to the low-temperature range for smaller values of|J|. In
such a way the parametersJ ) -1.5 cm-1 and ∆ ) -1150
cm-1 not only fit the experimental value of the barrier energy

but also ensure the minimum of theøT curve atT ) 7 K, which
is in agreement with the experimental data (Figure 2). The
increase oføT at low temperature is due to spin canting. This
canting arises from the competition between the axial single
ion anisotropy and the magnetic exchange interaction. It should
be emphasized that the position of the curve maximum and its
height are in satisfactory agreement with experimental data.
However, the calculatedøT value in the minimum is higher
than that observed, and this is most likely related to our
simplified model, which neglects the rhombic distortion of the
local surroundings of the Co ions. At the same time for the
parametersJ ) -1.5 cm-1 and ∆ ) -1150 cm-1 the model
well reproduces the main qualitative features of the observed
magnetic behavior.

The temperature dependence oføXXT, øYYT and øZZT is
presented in Figure 13. It can be seen that, at low temperatures,
the system exhibits strong magnetic anisotropy. Thus, atT <
10 K, theøXXT component of the tensorøT significantly exceeds
the componentsøYYT andøZZT and indicates the presence of an
uncompensated magnetic moment directed along the molecular
X axis. This behavior of theøT tensor components is in accord
with the results obtained from the mean field approximation.

5. Concluding Remarks

The recently discovered SCM behavior of the cobalt(II)
disphosphonate compound Co(H2L)(H2O) based on spin canting

øRR ) NAkBT
∂

2

∂HR
2
[ln Z(HR)]HR f 0 (31)

ø ) 1
3
(øXX + øYY+ øZZ) (32)

Figure 12. Temperature variation of the magnetic susceptibility of a
ring chain withN ) 5 unit cells forκ ) 0.8, ∆ ) -1150 cm-1, λ )
-160 cm-1, æ ) 54.6°, J ) -1.5 and-3 cm-1.

Figure 13. Diagonal components of theøT tensor as functions of
temperature forκ ) 0.8, ∆ ) -1150 cm-1, λ ) -160 cm-1, æ )
54.6°, J ) -1.5 cm-1, N ) 5.
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in a antiferromagnetically coupled Co(II) chain is the subject
of this current study. The new theoretical model of this effect
allows for the spin-orbit interaction, the axial component of
the crystal field acting on the ground-state cubic4T1 terms of
the Co(II) ions and the isotropic antiferromagnetic exchange
interaction. The cornerstone of the model is the effect of spin
canting that arises from the inclination of the local anisotropy
axes with respect to each other.

The results obtained in the present paper can be summarized
as follows. The effective pseudo-spin-1/2 exchange Hamiltonian
operating within the ground Kramers doublets of two Co(II)-
ions has been derived by taking into account the different
orientation of the local coordinate axes of these ions. The
dependence of the effective Hamiltonian parameters (compo-
nents of the exchange, TIP andg tensors) on the initial local
and intercenter microscopic parameters has been found. With
the aid of this highly anisotropic Hamiltonian the SCM
properties of the Co(H2L)(H2O) compound have been examined
in a combined approach comprising both the mean field
approximation and the exact quantum-mechanical solution for
a ring chain. In the framework of the mean field approximation
for a definite range of negative local axial distortions, the
possibility of appearance of an uncompensated magnetic mo-
ment is revealed in an infinite chain with spin canting and an
antiferromagnetic Heisenberg exchange interaction. The height
of the barrier for magnetization reversal has been calculated as
a function of the value of the negative axial crystal field
parameter. The magnitude of this parameter determining the
barrier height for the titled compound has been estimated. The
calculated temperature dependence of the magnetization relax-
ation time was found to be in satisfactory agreement with
experimental data. We have also shown that the ring chain
approach reasonably describes the experimental magnetic
susceptibility curve for the set of microscopic parameters
consistent with the observed barrier height.

To discuss the real 1D Co(II) chain in more detail, the adopted
model needs to be generalized in several aspects. First, a more
precise model of the local symmetry of the Co(II) ions in the
chain should be introduced in conformity with X-ray data.
Second, the suggested model is limited to the consideration of
the lowest Kramers doublet of each Co(II) ion. This in its turn
allows only the consideration of the low-temperature magnetic
properties. A new computational approach to the problem of
the magnetic properties of the 1D Co(II) chain that takes into
account the whole energy patterns of the constituent ions and
provides an opportunity to simulate the magnetic properties up
to room temperature should be developed. The quantum-
mechanical estimation of the parameter of exchange interaction
and values of the local distortions would be also useful. In spite
of these restricting assumptions in the treatment carried out in
this work, the suggested model reflects the main qualitative
features of the observed phenomenon. The developed ap-
proaches explain the SCM behavior of the Co(H2L)(H2O)
compound and represent the first attempt to exceed the limits
of the usually accepted SCM model based on consideration of
Heisenberg exchange and zero-field splitting Hamiltonians
inapplicable for systems with unquenched orbital momenta.

Appendix

Transformation connecting the spin operator components in
the molecular and local frames:

Transformation connecting the magnetic field components in
the molecular and local frames:
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